Example name	Weight loss
Effect size	Risk difference
Analysis type	Subgroups analysis

Synopsis
This analysis includes 21 studies where patients were randomized to receive either a drug or placebo. Outcome was the proportion of patients meeting a criterion for success in losing weight. The effect size was the risk difference, i.e. the difference in success rates between the two groups.

Some studies compared Orlistat vs. placebo while others compared Sibutramine vs. placebo. The primary goal of the meta-analysis was to compare subgroups of studies, i.e. to see if the risk difference is higher (or lower) in studies that used Orlistat as compared with studies that used Sibutramine.

We use this example to show

- How to enter data for a moderator
- How to compare subgroups
- How to choose a method computing T^{2} in the presence of subgroups
- How to understand the statistics for a mixed-effect analysis

To open a CMA file > Download and Save file | Start CMA | Open file from within CMA
Download CMA file for computers that use a period to indicate decimals
Download CMA file for computers that use a comma to indicate decimals
Download this PDF
Download data in Excel
Download trial of CMA

Start the program

- Select the option [Start a blank spreadsheet]
- Click [Ok]

Click Insert > Column for > Study names

弐 Comprehensive meta analysis - [Data]

The screen should look like this

Click Insert > Column for > Effect size data

The program displays this wizard

Select [Show all 100 formats] Click [Next]

Select [Comparison of two groups...] Click [Next]

Drill down to

Dichotomous (number of events) Unmatched groups, prospective ... Events and sample size in each group

The program displays this wizard

Enter the following labels into the wizard

- First group > Drug
- Second group > Control
- Name for events > Success
- Name for non-events > Failure

Click [Ok] and the program will copy the names into the grid

团 Comprehensive meta analysis - [Data]

We also need to add a column for the moderator, Drug

Click Insert > Column for > Moderator variable

- Name the moderator > Drug
- Set the data type to Categorical
- Click Ok

团 Comprehensive meta analysis - [Data]

	Study name	$\begin{aligned} & \text { Drug } \\ & \text { Success } \end{aligned}$	$\frac{\text { Drug }}{\text { TotalN }}$	Control Success	Control Total N	Odds ratio	Log odds ratio	StdEr	Variance	J	K	L	M	N	0
1															
2															
3															
4								E Co	mn format						
5															
6								Name	Values						
7															
8															
9									lena ne						
10									nfurtion			\checkmark			
11								Colu	n fur tion			\checkmark			
12								Data	ype						
13												\square			
14								Align	ent						
15															
16															
17															
18															
19															
20															
21															
22															
23															
24												Cancel			
25												Ok			
26															
27															
28															
29															

The screen should look like this

团 Comprehensive meta analysis - [Data]

	Study name	Drug Success	Drug Total N	Control Success	Control Total N	Odds ratio	Log odds ratio	Std Err	\checkmark ariance	Drug	L	M	N
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													

Rather than enter the data directly into CMA we will copy the data from Excel

- Switch to Excel and open the file "Weight loss"
- Highlight the rows and columns as shown (Columns A to E only), and press CTRL-C to copy to clipboard

- Switch to CMA
- Click in cell Study-name 1
- Press [CTRL-V] to paste the data
- The screen should look like this

团 Comprehensive meta analysis - [Data]																
Eile Edit Format View Insert Identify Iools Computational options Analyses Help																
	Study name	$\begin{gathered} \text { Dus } \\ \text { ouccess } \end{gathered}$	$\begin{aligned} & \text { Drug } \\ & \text { TotalN } \end{aligned}$	Control Success	Control Total N	Odds ratio	Log odds ratio		Std Eir	Variance	Drug	K	L	M	N	
	Study	Tx Success	TxN	Ctrl	CrIN											
2	2 Lindgarde, 2000	103	190	76	186	1.714	0.539		0.208	0.043						
3	Finer, 2000	39	110	23	108	2.030	0.708		0.308	0.095						
4	4 XENDOS	866	1640	611	1637	1.879	0.631		0.071	0.005						
5	5 Rossner, 2000	155	242	107	237	2.165	0.772		0.187	0.035						
6	Kelley, 2002	87	266	35	269	3.249	1.178		0.223	0.050						
7	Hauptman, 2000	106	210	65	212	2.305	0.835		0.203	0.041						
8	Siostrom, 1998	237	343	167	340	2.316	0.840		0.159	0.025						
9	Krempf, 2003	130	223	74	196	2.305	0.835		0.200	0.040						
10	Davidson, 1999	434	657	98	223	2.482	0.909		0.158	0.025						
11	Miles, 2002	98	250	41	254	3.349	1.209		0.214	0.046						
12	Bakris, 2002	122	267	58	265	3.003	1.100		0.193	0.037						
13	Hollander, 1998	80	163	37	159	3.178	1.156		0.244	0.060						
14	Broom, 2002	144	259	64	263	3.893	1.359		0.190	0.036						
15	Berne, 2004	51	111	12	109	6.871	1.927		0.360	0.130						
16	Hauner, 2004	109	174	72	174	2.376	0.865		0.220	0.048						
17	McMahon, 2000	57	142	6	69	7.041	1.952		0.460	0.212						
18	Apfelbaum, 1999	71	82	43	78	5.254	1.659		0.396	0.157						
19	McNulty, 2003	31	68	8	64	5.865	1.769		0.450	0.202						
20	McMahon, 2002	62	145	6	72	8.217	2.106		0.458	0.210						
21	Smith, 2001	87	153	32	157	5.149	1.639		0.257	0.066						
22	Sanches-Rieyes,	26	44	7	42	7.222	1.977		0.515	0.265						
23																
24																

- Switch to Excel
- Highlight the Dose column as shown and click [CTRL-C]

- Switch to CMA
- Click the cell Dose-1
- Press CTRL-V to paste the data

Click here

File Edit Format View Insert Identify Iools Computational options Analyses Help															
	Study name	Drug Success	Drug Total N	Control Success	Control Total N	Odds ratio	Log odds ratio	Std Err	Variance	Druq	K	L	M	N	0
1	Study	Tx Success	TxN	Ctrl	Ctrs										
2	Lindgarde, 2000	103	190	76	186	1.714	0.539	0.208	0.043						
3	Finer, 2000	39	110	23	108	2.030	0.708	0.308	0.095						
4	XENDOS	866	1640	611	1637	1.879	0.631	0.071	0.005						
5	Rossner, 2000	155	242	107	237	2.165	0.772	0.187	0.035						
6	Kelley, 2002	87	266	35	269	3.249	1.178	0.223	0.050						
7	Hauptman, 2000	106	210	65	212	2.305	0.835	0.203	0.041						
8	Sjostrom, 1998	237	343	167	340	2.316	0.840	0.159	0.025						
9	Krempl, 2003	130	223	74	196	2.305	0.835	0.200	0.040						
10	Davidson, 1999	434	657	98	223	2.482	0.909	0.158	0.025						
11	Miles, 2002	98	250	41	254	3.349	1.209	0.214	0.046						
12	Bakris, 2002	122	267	58	265	3.003	1.100	0.193	0.037						
13	Hollander, 1998	80	163	37	159	3.178	1.156	0.244	0.060						
14	Broom, 2002	144	259	64	263	3.893	1.359	0.190	0.036						
15	Berne, 2004	51	111	12	109	6.871	1.927	0.360	0.130						
16	Hauner, 2004	109	174	72	174	2.376	0.865	0.220	0.048						
17	McMahon, 2000	57	142	6	69	7.041	1.952	0.460	0.212						
18	Apfelbaum, 1999	71	82	43	78	5.254	1.659	0.396	0.157						
19	McNulty, 2003	31	68	8	64	5.865	1.769	0.450	0.202						
20	McMahon, 2002	62	145	6	72	8.217	2.106	0.458	0.210						
21	Smith, 2001	87	153	32	157	5.149	1.639	0.257	0.066						
22	Sanches-Reyes,	26	44	7	42	7.222	1.977	0.515	0.265						
23															
24															

＊＋］Comprehensive meta analysis－［Data］															
File Edit Format View Insert Identify Iools Computational options Analyses Help															
				为㬝鄋	愘｜－	＂${ }^{\prime \prime}$	0 ． $00{ }_{0}^{++}$	$\downarrow \rightarrow$	$\checkmark \square$	A $\mathrm{C} \downarrow \mathrm{Z}$ 云 \downarrow					
	Study name	Drug Success	Drug Total N	Control Success	Control Total N	Odds ratio	Log odds ratio	Std Em	Variance	Drug	K	L	M	N	0
1	Study	Tx Success	$\mathrm{T} \times \mathrm{N}$	Ctrl	Ctr					Drug					
2	Lindgarde， 2000	103	190	76	186	1.714	0.539	0.208	0.043	Orlistat					
3	3 Finer， 2000	39	110	23	108	2.030	0.708	0.308	0.095	Orlistat					
4	XENDOS	866	1640	611	1637	1.879	0.631	0.071	0.005	Orlistat					
5	5 Rossner， 2000	155	242	107	237	2.165	0.772	0.187	0.035	Orlistat					
6	Kelley， 2002	87	266	35	269	3.249	1.178	0.223	0.050	Orlistat					
7	Hauptman， 2000	106	210	65	212	2.305	0.835	0.203	0.041	Orlistat					
8	Siostrom， 1998	237	343	167	340	2.316	0.840	0.159	0.025	Orlistat					
9	Krempl， 2003	130	223	74	196	2.305	0.835	0.200	0.040	Orlistat					
10	Davidson， 1999	434	657	98	223	2.482	0.909	0.158	0.025	Orlistat					
11	Miles， 2002	98	250	41	254	3.349	1.209	0.214	0.046	Orlistat					
12	Bakris， 2002	122	267	58	265	3.003	1.100	0.193	0.037	Orlistat					
13	Hollander， 1998	80	163	37	159	3.178	1.156	0.244	0.060	Orlistat					
14	Broom， 2002	144	259	64	263	3.893	1.359	0.190	0.036	Orlistat					
15	5 Berne， 2004	51	111	12	109	6.871	1.927	0.360	0.130	Orlistat					
16	Hauner， 2004	109	174	72	174	2.376	0.865	0.220	0.048	Sibutramine					
17	McMahon， 2000	57	142	6	69	7.041	1.952	0.460	0.212	Sibutramine					
18	Apfelbaum， 1999	71	82	43	78	5.254	1.659	0.396	0.157	Sibutramine					
19	McNulty， 2003	31	68	8	64	5.865	1.769	0.450	0.202	Sibutramine					
20	McMahon， 2002	62	145	6	72	8.217	2.106	0.458	0.210	Sibutramine					
21	Smith， 2001	87	153	32	157	5.149	1.639	0.257	0.066	Sibutramine					
22	Sanches－Reyes，	26	44	7	42	7.222	1.977	0.515	0.265	Sibutramine					
23															
24															
25															

At this point we should check that the data has been copied correctly

The column that had been called "Tx infection" is now "Drug infection". Similarly, all columns have the intended labels

团 Comprehensive meta analysis - [Data]															
File Edit Format View Insert Identify Iools Computational options Analyses Help															
	Study name	$\begin{aligned} & \text { Drug } \\ & \text { Success } \end{aligned}$	$\begin{aligned} & \text { Drug } \\ & \text { Total } \mathrm{N} \end{aligned}$	Control Success	Control Total N	Odds ratio	Log odds ratio	StdEr	Variance	Drug	K	L	M	N	0
1	Study	Tx Success	TxN	CtH	$\mathrm{Cr\mid N}$					Drug					
2	Lindgarde, 2000	103	190	76	186	1.714	0.539	0.208	0.043	Orlistat					
3	Finer, 2000	39	110	23	108	2.030	0.708	0.308	0.095	Orlistat					
4	XENDOS	866	1640	611	1637	1.879	0.631	0.071	0.005	Orlistat					
5	Rossner, 2000	155	242	107	237	2.165	0.772	0.187	0.035	Orlistat					
6	Kelley, 2002	87	266	35	269	3.249	1.178	0.223	0.050	Orlistat					
7	Hauptman, 2000	106	210	65	212	2.305	0.835	0.203	0.041	Oristat					
8	Siostrom, 1998	237	343	167	340	2.316	0.840	0.159	0.025	Orlistat					
9	Krempt, 2003	130	223	74	196	2.305	0.835	0.200	0.040	Orlistat					
10	Davidson, 1999	434	657	98	223	2.482	0.909	0.158	0.025	Orlistat					
11	Miles, 2002	98	250	41	254	3.349	1.209	0.214	0.046	Orlistat					
12	Bakris, 2002	122	267	58	265	3.003	1.100	0.193	0.037	Orlistat					
13	Hollander, 1998	80	163	37	159	3.178	1.156	0.244	0.060	Orlistat					
14	Broom, 2002	144	259	64	263	3.893	1.359	0.190	0.036	Orlistat					
15	Berne, 2004	51	111	12	109	6.871	1.927	0.360	0.130	Orlistat					
16	Hauner, 2004	109	174	72	174	2.376	0.865	0.220	0.048	Sibutramine					
17	McMahon, 2000	57	142	6	69	7.041	1.952	0.460	0.212	Sibutramine					
18	Apfelbaum, 1999	71	82	43	78	5.254	1.659	0.396	0.157	Sibutramine					
19	McNulty, 2003	31	68	8	64	5.865	1.769	0.450	0.202	Sibutramine					
20	McMahon, 2002	62	145	6	72	8.217	2.106	0.458	0.210	Sibutramine					
21	Smith, 2001	87	153	32	157	5.149	1.639	0.257	0.066	Sibutramine					
22	Sanches-Reyes,	26	44	7	42	7.222	1.977	0.515	0.265	Sibutramine					
23															
24															
25															

- Click anywhere in Row 1
- Select Edit > Delete row, and confirm

Click here

囯 Comprehensive meta analysis - [Data]

The screen should look like this

＊才 Comprehensive meta analysis－［Data］														
File Edit Format View Insert Identify Iools Computational options Analyses Help														
Run analyses \rightarrow \＆\square 風䣲			回｜易｜		復 ${ }^{\text {－}}$	－${ }^{\prime}=$	$\xrightarrow[+00]{.0}+00 \stackrel{+}{\square}$	\downarrow	A \ddagger A \ddagger					
	Study name	Drug Success	Drug Total N	Control Success	Control Total N	Odds ratio	Log odds ratio	Std Err	Variance	Drug	K	L	M	N
1	Lindgarde， 2000	103	190	76	186	1.714	0.539	0.208	0.043	Orlistat				
2	Finer， 2000	39	110	23	108	2.030	0.708	0.308	0.095	Orlistat				
3	XENDOS	866	1640	611	1637	1.879	0.631	0.071	0.005	Orlistat				
4	Rossner， 2000	155	242	107	237	2.165	0.772	0.187	0.035	Orlistat				
5	Kelley， 2002	87	266	35	269	3.249	1.178	0.223	0.050	Orlistat				
6	Hauptman， 2000	106	210	65	212	2.305	0.835	0.203	0.041	Orlistat				
7	Sjostrom， 1998	237	343	167	340	2.316	0.840	0.159	0.025	Orlistat				
8	Krempl， 2003	130	223	74	196	2.305	0.835	0.200	0.040	Orlistat				
9	Davidson， 1999	434	657	98	223	2.482	0.909	0.158	0.025	Orlistat				
10	Miles， 2002	98	250	41	254	3.349	1.209	0.214	0.046	Orlistat				
11	Bakris， 2002	122	267	58	265	3.003	1.100	0.193	0.037	Orlistat				
12	Hollander， 1998	80	163	37	159	3.178	1.156	0.244	0.060	Orlistat				
13	Broom， 2002	144	259	64	263	3.893	1.359	0.190	0.036	Orlistat				
14	Berne， 2004	51	111	12	109	6.871	1.927	0.360	0.130	Orlistat				
15	Hauner， 2004	109	174	72	174	2.376	0.865	0.220	0.048	Sibutramine				
16	McMahon， 2000	57	142	6	69	7.041	1.952	0.460	0.212	Sibutramine				
17	Apfelbaum， 1999	71	82	43	78	5.254	1.659	0.396	0.157	Sibutramine				
18	McNulty， 2003	31	68	8	64	5.865	1.769	0.450	0.202	Sibutramine				
19	McMahon， 2002	62	145	6	72	8.217	2.106	0.458	0.210	Sibutramine				
20	Smith， 2001	87	153	32	157	5.149	1.639	0.257	0.066	Sibutramine				
21	Sanches－Reyes，	26	44	7	42	7.222	1.977	0.515	0.265	Sibutramine				
22														
23														
24														

Click File＞Save As and save the file

Note that the file name is now in the header.

- [Save] will over-write the prior version of this file without warning
- [Save As...] will allow you to save the file with a new name

The program is displaying the odds ratio for each study. We want to use the risk difference.

Right-click anywhere in the yellow columns

团 Comprehensive meta analysis - [C:\Users\Michael\Dropbox\Workshops 2\Weight Loss\Weght Loss.cma]															
Eile Edit Format View Insert Identify Iools Computational options Analyses Help															
	Study name	Drug Success	$\begin{aligned} & \text { Drug } \\ & \text { Total } \mathrm{N} \end{aligned}$	Control Success	Control Total N	Odds ratio	Log odds ratio	Std Efr	Variance	Drug	K	L	M	N	
1	Lindgarde, 2000	103	190	76	186	1.714	0.539	0.208	0.043	Orlistat					
2	Finer, 2000	39	110	23	108	2.030	0.708	0.308	0.095	Orlistat					
3	XENDOS	866	1640	611	1637	1.879	0.631	0.071	0.005	Orlistat					
4	Rossner, 2000	155	242	107	237	2.165	0.772	0.187	0.035	Oristat					
	Kelley, 2002	87	266	35	269	3.249	1.178	0.223	0.050	Orlistat					
6	Hauptman, 2000	106	210	65	212	2.305	0.835	0.203	0.041	Orlistat					
7	Siostrom, 1998	237	343	167	340	2.316	0.840	0.159	0.025	Orlistat					
8	Krempt, 2003	130	223	74	196	2.305	0.835	0.200	0.040	Orlistat					
9	Davidson, 1999	434	657	98	223	2.482	0.909	0.158	0.025	Orlistat					
10	Miles, 2002	98	250	41	254	3.349	1.209	0.214	0.046	Orlistat					
11	Bakris, 2002	122	267	58	265	3.003	1.100	0.193	$\stackrel{\text { A }}{2} \downarrow$ Sort A-						
12	Hollander, 1998	80	163	37	159	3.178	1.156	0.244	Z \downarrow Sort Z-						
13	Broom, 2002	144	259	64	263	3.893	1.359	0.190	A						
14	Berne, 2004	51	111	12	109	6.871	1.927	0.360	Colum	n properti					
15	Hauner, 2004	109	174	72	174	2.376	0.865	0.220							
16	McMahon, 2000	57	142	6	-69	7.041	1.952	0.460		ntry assista					
17	Apfelbaum, 1999	71	82	43	78	5.254	1.659	0.396	Σ Formul						
18	McNulty, 2003	31	68	8	64	5.865	1.769	0.450	Show	all selected					
19	McMahon, 2002	62	145	6	72	8.217	2.106	0.458							
20	Smith, 2001	87	153	32	157	5.149	1.639	0.257	U Showo	only the pr					
21	Sanches-Rieyes,	26	44	7	42	7.222	1.977		\% Set prim	mary inder					
22									+ Custom	nize comp					
23									+ Custor						
24															
25															

[^0]Check the box for Risk difference

困 Comprehensive meta analysis - [C:\Users\Michael\Dropbox\Workshops 2\Weight Loss\Weght Loss.cma]

Set the primary index to risk difference

Un-check the boxes for odds ratio and log odds ratio

- Check the box for Also show standard error
- Check the box for Also show variance
- Click Ok
- To run the analysis, click [Run analysis]

团 Comorehensive meta analysis - [C:\Users\Michael\Dropbox\Workshops $2 \backslash$ Weight Loss\Weght Loss.cma]

File Edit Format	iew Insert Identify Iools Computational options Analyses Help												
Run analyses \rightarrow Q							$\downarrow \rightarrow$ Variance	$\frac{+\checkmark \square}{\text { Drug }}$			L	M	N
Study name	$\begin{aligned} & \text { Drug } \\ & \text { Success } \end{aligned}$	$\begin{aligned} & \text { Drug } \\ & \text { Total } \mathrm{N} \end{aligned}$			Risk difference	Std Err			J	K			
1 Lindgarde, 2000	103	190	76	186	0.134	0.051	0.003						
2 Finer, 2000	39	110	23	108	0.142	0.060	0.004	Orlistat					
3 XENDOS	866	1640	611	1637	0.155	0.017	0.000	Oristat					
4 Rossner, 2000	155	242	107	237	0.189	0.045	0.002	Orlistat					
5 Kelley, 2002	87	266	35	269	0.197	0.035	0.001	Orlistat					
6 Hauptman, 2000	106	210	65	212	0.198	0.047	0.002	Orlistat					
7 Siostrom, 1998	237	343	167	340	0.200	0.037	0.001	Orlistat					
8 Krempt, 2003	130	223	74	196	0.205	0.048	0.002	Orlistat					
9 Davidson, 1999	434	657	98	223	0.221	0.038	0.001	Orlistat					
10 Miles, 2002	98	250	41	254	0.231	0.039	0.001	Orlistat					
11 Bakris, 2002	122	267	58	265	0.238	0.040	0.002	Orlistat					
12 Hollander, 1998	80	163	37	159	0.258	0.052	0.003	Oristat					
13 Broom, 2002	144	259	64	263	0.313	0.041	0.002	Orlistat					
14 Berne, 2004	51	111	12	109	0.349	0.056	0.003	Orlistat					
15 Hauner, 2004	109	174	72	174	0.213	0.052	0.003	Sibutramine					
16 McMahon, 2000	57	142	6	69	0.314	0.053	0.003	Sibutramine					
17 Apfelbaum, 1999	71	82	43	78	0.315	0.068	0.005	Sibutramine					
18 McNulty, 2003	31	68	8	64	0.331	0.073	0.005	Sibutramine					
19 McMahon, 2002	62	145	6	72	0.344	0.052	0.003	Sibutramine					
20 Smith, 2001	87	153	32	157	0.365	0.051	0.003	Sibutramine					
21 Sanches-Reyes,	26	44	7	42	0.424	0.094	0.009	Sibutramine					
22													
23													

This is the basic analysis screen
Initially, the program displays the fixed-effect analysis. This is indicated by the tab at the bottom and the label in the plot.

Click [Both models]

The program displays results for both the fixed-effect and the random-effects analysis.

The fact that the two results differ tells us that the RE weights are different from the FE weights. This means that T^{2}, the estimate of between-study variance in true effects is not zero.

The confidence interval is wider for random-effects than for fixed-effects. This will always be the case when T^{2} is not zero.

The random-effects model is a better fit for the way the studies were sampled, and therefore that is the model we will use in the analysis.

- Click Random on the tab at the bottom

The plot now displays the random-effects analysis alone.

A quick view of the plot suggests the following

- All of the studies suggest an advantage for treatment over placebo
- The observed effect size ranges over a wide area. The dispersion appears to be more than we would expect based on the precision of each study.
- The summary effect is 0.243 . On average, the success rate on drug was 24 percentage points higher than the success rate on placebo. The Cl is 0.211 to 0.276 , which tells us that the mean effect is clearly in the clinically important range.
- The summary effect has a Z-value 14.656 and a p-value of <0.001. Thus we can reject the null hypotheses that the true risk difference is 0.0 .
- To have a closer look at this variance we turn to the next table.

Click [Next table]

The statistics at the left duplicate those we saw on the prior screen.

- Under the random-effects model the risk difference is 0.243 with a 95% confidence interval of 0.211 to 0.276 . The test of the null (that the true risk difference is 0.0) yields a Z-value of 14.656 and a corresponding p-value of <0.001.
- The statistics at the upper right relate to the dispersion of effect sizes across studies.
- The Q-value is 57.546 with $d f=20$ and $p<0.001$. Q reflects the distance of each study from the mean effect (weighted, squared, and summed over all studies). Q is always computed using FE weights (which is the reason it is displayed on the "Fixed" row, but applies to both FE and RE analyses.
- If all studies actually shared the same true effect size, the expected value of Q would be equal to df (which is 20). Here, Q exceeds that value, and so the estimate of T 2 for the sample will be greater than zero. Additionally, Q exceeds that value by a large enough margin, so that we can find that T2 exceeds zero not only in the sample, but also for the population. Concretely, $\mathrm{p}<$ 0.001, and we reject the null hypothesis that all studies in the universe from which the sample was drawn share the same true effect size.
- T^{2} is the estimate of the between-study variance in true effects. This estimate is $0.003 . T$ is the estimate of the between-study standard deviation in true effects. This estimate is 0.059 .
- 12 reflects the proportion of true variance to observed variance. This estimate is 65\%. This means that if each of the studies had a huge sample size (and therefore estimated the effect in its population with little error) the variance in observed effect sizes would shrink to about 65\% of the current value.
- Click [Next table] to return to this screen

In this analysis we want to focus on the treatment effect as a function of Drug. Specifically, we're going to run the analysis separately (a) for studies that compared Orlistat vs. placebo and (b) for studies that compared Sibutramine vs. placebo.

When we're dividing the studies into two subgroups, the between-studies variance (T^{2}) must be computed within subgroups. However, we have two options. We can then pool the separate estimates, and use the pooled value for all subgroups. Or, we can use a separate estimate for each subgroup.

Our plan at the moment is to use a separate estimate for each subgroup. To select that option

Click Computational options $>$ Mixed and random effects options

The program displays this wizard

- At the top select the first option, to "Assume a common among-study variance"
- At the bottom select the first option, to "Combine subgroups using a fixed-effect model"

Now, we can tell the program to run the analysis by subgroups.
Click Computational options > Group by

- Select Drug
- Check the two boxes
- Click Ok

The screen should look like this

For the Orlistat studies the mean effect size is a risk difference of 0.213 with a confidence interval of 0.183 to 0.242 , a Z-value of 14.102 and a corresponding p-value of <0.001. It's clear that the drug is more effective than placebo, and that the impact is clinically as well as statistically significant.

For the Sibutramine studies the mean effect size is a risk difference of 0.320 with a confidence interval of 0.267 to 0.373 , a Z-value of 11.853 and a corresponding p-value of <0.001. It's clear that the drug is more effective than placebo, and that the impact is clinically as well as statistically significant.

For all studies together the mean effect size is a risk difference of 0.238 with a confidence interval of 0.213 to 0.264 , a Z-value of 18.091 and a corresponding p-value of <0.001. However, given that we had intended a priori to study the effect as a function of drug, this overall effect has limited meaning. In particular, the overall mean will depend on what proportion of the studies employed one drug rather than the other.

Therefore, we are better off focusing on the mean effect for each subgroup.

We want to know if the difference between the two effect sizes (0.213 vs . 0.320) is statistically significant, and we'll run a test for this.

To get a better sense of what we're testing, click the "All studies" button. This will hide all of the individual studies and display the summary effects only as shown here.

The test will compare the two mean effects relative to the precision of each effect. For two groups we can think of this as a Z-test for the ratio of the difference in means to the standard error of the difference.

Toggle the "All studies button" to display the studies again.

We can right-click on the plot and expand the scale to see this more clearly

Here, it seems clear that there is no overlap between the confidence intervals for the two subgroups. We would therefore expect that the test to compare the two means will yield a statistically significant p value.

Click Next Table to see the results

The top section of the page (labeled Fixed-effect analysis) is for an analysis where we compute the summary effect in each group using FE weights, and then compare these values

The bottom section of the page (Mixed-effects analysis) is for an analysis where we compute the summary effect for each group using RE weights, and then compare these values.

We want to use the bottom section. The RE model is a better fit for the way the studies were sampled, and so this is the appropriate analysis.

Click Format > Increase decimals

Toward the left of the screen the program displays the same numbers we saw a moment ago.

For the Orlistat studies the mean effect size is a risk difference of 0.213 with a confidence interval of 0.183 to 0.242 , a Z-value of 14.102 and a corresponding p-value of <0.001. It's clear that the drug is more effective than placebo, and that the impact is clinically as well as statistically significant.

For the Sibutramine studies the mean effect size is a risk difference of 0.320 with a confidence interval of 0.267 to 0.373 , a Z-value of 11.853 and a corresponding p-value of <0.001. It's clear that the drug is more effective than placebo, and that the impact is clinically as well as statistically significant.

The test to compare the two effect sizes (0.213 vs. 0.320) yields a Q-value of 12.098 with 1 df and a corresponding p-value of 0.001 .

Toward the right of the screen the program displays information about between-study heterogeneity. As was true for the single-group of studies, these statistics are based on FE weights and are therefore displayed in the top section, but they apply to the RE analysis as well.

For the Orlistat studies the variance in effects yields a Q-value of 27.560 with $13 d f$ and $p=0.010 . T^{2}$ is estimated at $0.002, T$ is 0.041 , and I^{2} is 52.831%

For the Sibutramine studies the variance in effects yields a Q-value of 6.454 with $6 d f$ and $p=0.374$. T^{2} is estimated at $0.0003, T$ is 0.017 , and I^{2} is 7.031%

We can also perform an omnibus test by pooling the Q values and $d f$ across subgroups. The pooled Q is 34.014 with $d f=19$ and $p=0.018$.

These tests are goodness-of-fit tests. They ask if the grouping (Orlistat vs. Sibutramine) explains all of the variance in true effect sizes, or if some true variance remains, even within subgroups. Here, there is evidence of true variance within subgroups.

Note that the tests of homogeneity are displayed in the fixed-effect section, even though we're using the random-effects model within subgroups. This is because these tests always are always based on using within-study (fixed-effect) weights. That is, we pose the null (that T^{2} is zero) and then see is the variance is consistent with the null.

Click Next table to return to this screen.

Next, we want to create a high-resolution plot

- Right-click on the statistics section
- Select Customize basic stats

- Check the boxes for risk difference and p-value
- Uncheck all other boxes
- Click Ok

The screen should look like this

- Click High-Resolution plot
- Reset All
- The screen should look like this

It's always a good idea to double-check the labels, and ensure that the studies classified as "Favors Drug" did indeed have the higher lower event rate if the event is success, as it is here - or a lower event rate if the event is a bad outcome.

Now that we've established that the treatment effect varies by drug, we might want to run a completely separate analysis for the Orlistat studies and for the Sibutramine studies.

The basic idea would be Select by drug, and then to run the same kind of analysis that we normally use for a single set of studies.

Summary

This analysis includes 21 studies where patients were randomized to receive either a drug or placebo. Outcome was the proportion of patients meeting a criterion for success in losing weight. The effect size was the risk difference, i.e. the difference in success rates between the two groups.

Some studies compared Orlistat vs. placebo while others compared Sibutramine vs. placebo. The primary goal of the meta-analysis was to compare subgroups of studies, i.e. to see if the risk difference is higher (or lower) in studies that used Orlistat as compared with studies that used Sibutramine.

Are the drugs effective?

The mean risk difference is 0.243 , which means that being assigned to a drug rather than a placebo resulted in a 24.3 point increase in the likelihood of success.

These studies were sampled from a universe of possible studies defined by certain inclusion/exclusion rules as outlined in the full paper. The confidence interval for the risk difference is 0.211 to 0.276 , which tell us that the mean risk difference in the universe of studies could fall anywhere in this range. This range does not include a risk difference of zero, which tells us that the mean risk difference in the universe of studies is probably not zero.

Similarly, the Z-value for testing the null hypothesis (that the mean risk difference is zero) is 14.656 , with a corresponding p-value is <0.001. We can reject the null that the likelihood of success is the same in both groups, and conclude that the likelihood of success is higher in the drug group.

Is drug type (Orlistat vs. Sibutramine) related to the likelihood of success?

The mean effect for the Orlistat studies was 0.213 with a confidence interval of 0.183 to 0.252 . The mean effect for the Sibutramine studies was 0.320 with a confidence interval of 0.268 to 0.374 . The test for the difference between means yields a Q -value of 12.098 with 1 df and $\mathrm{p}=0.0005$.

We reject the null that the mean true effect is identical in the two (in the universe from which the Orlistat studies were sampled and the universe from which the Sibutramine studies were sampled), and conclude that the effect is stronger in the Sibutramine studies.

In each study random-assignment was used to allocate patients to drug or placebo. Within a study we can assume that the patients in each condition are identical except for being given drug or placebo. Therefore, the main effect in each study (drug vs. placebo) can be attributed to the drug. Similarly, the main effect in the analysis (Drug vs. placebo across all studies) can be attributed to the drug.

By contrast, random-assignment was not used to allocate studies to Orlistat vs. Sibutramine. We cannot assume that the populations in the two subgroups of studies were identical in all respects except for the choice of drug. It's possible, for example, that one drug was favored at sites that had an older population while the other was favored at sites that had a younger population. Therefore, while we can report that one subgroup did better than the other, we cannot say definitively that this was due to the drug.

[^0]: Select Customize computed effect size display

